150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells.
نویسندگان
چکیده
To assess the participation of the 150-kDa oxygen-regulated protein (ORP150) in protein transport, its function in Madin-Darby canine kidney (MDCK) cells was studied. Exposure of MDCK cells to hypoxia resulted in an increase of ORP150 antigen and increased binding of ORP150 to GP80/clusterin (80-kDa glycoprotein), a natural secretory protein in this cell line. In ORP150 antisense transformant MDCK cells, GP80 was retained within the endoplasmic reticulum after exposure to hypoxia. Metabolic labeling showed the delay of GP80 maturation in antisense transformants in hypoxia, whereas its matured form was detected in wild-type cells, indicating a role of ORP150 in protein transport, especially in hypoxia. The affinity chromatographic analysis of ORP150 suggested its ability to bind to ATP-agarose. Furthermore, the ATP hydrolysis analysis showed that ORP150 can release GP80 at a lower ATP concentration. These data indicate that ORP150 may function as a unique molecular chaperone in renal epithelial cells by facilitating protein transport/maturation in an environment where less ATP is accessible.
منابع مشابه
Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone.
Expression of angiogenic factors such as vascular endothelial growth factor (VEGF) under conditions of cell stress involves both transcriptional and translational events, as well as an important role for inducible endoplasmic reticulum (ER) chaperones. Coexpression of VEGF and 150-kDa oxygen-regulated protein (ORP), a novel ER chaperone, in human glioblastoma suggested a link between angiogenes...
متن کاملProtein 150, an Inducible Endoplasmic Reticulum Chaperone Regulation of Tumor Angiogenesis by Oxygen-regulated
Expression of angiogenic factors such as vascular endothelial growth factor (VEGF) under conditions of cell stress involves both transcriptional and translational events, as well as an important role for inducible endoplasmic reticulum (ER) chaperones. Coexpression of VEGF and 150-kDa oxygen-regulated protein (ORP), a novel ER chaperone, in human glioblastoma suggested a link between angiogenes...
متن کاملThe endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes.
To determine the role of the endoplasmic reticulum (ER) in diabetes, Akita mice, a mouse model of type 2 diabetes, were mated with either heterozygous knockout mice or two types of transgenic mice of 150-kDa oxygen-regulated protein (ORP150), a molecular chaperone located in the ER. Systemic expression of ORP150 in Akita mice improves insulin intolerance, whereas the exclusive overexpression of...
متن کاملTargeting of the molecular chaperone oxygen-regulated protein 150 (ORP150) to mitochondria and its induction by cellular stress.
Oxygen-regulated protein 150 (ORP150) is an inducible endoplasmic reticulum (ER) chaperone molecule that is upregulated after numerous cellular insults and has a cytoprotective role in renal, neural, and cardiac models of ischemia-reperfusion injury. ORP150 also has been shown to play a role in cellular Ca(2+) homeostasis, and in turn, regulating calpain activity. In this study, we identified O...
متن کاملUp-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells.
Induction of apoptosis by nonsteroidal anti-inflammatory drugs, such as celecoxib, is involved in their antitumor activity. An endoplasmic reticulum chaperone, 150-kDa oxygen-regulated protein (ORP150) is essential for the maintenance of cellular viability under hypoxia and is reported to be overexpressed in clinically isolated tumors. We here found that ORP150 was up-regulated by celecoxib in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2000